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A Study on Penetration Fracture Characteristics 
of Glass Plates Subjected to Impact Loadings 

Kwang-Hee Im*, Ji-Hoon Kim** and In-Young Yang*** 
(Received November 30, 1996) 

In this study, a comparison between theoretical solutions and experimental results are 

examined for fracture conditions in the case of float glass plates subject to static loadings. The 

ranges from fracture-generated initiations to critical penetration energies are confirmed accord- 

ing 1:o the impactor mass under high velocity, and an analytical method is presented to determine 

the fracture strength and penetration strength. Also, fracture patterns are investigated according 

to impact velocities. 
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Impact, Fracture Strength 

I. Introduct ion 

When a machine or structural component is 

subjected to impact loading, unexpected failure 

can occur as a result of stress wave effects. Such 

impact problems are dependent on dynamic 

behavior, and to investigate the dynamic phenom- 

ena generated in the materials, research activities 

have recently focused on plates subjected to high 

-speed impact(Wang et al., 1989 and Holian, 

1990), on the impact of composite shell members 

used in ships and aircraft bodies (Chao et al., 

1989), and on impact problems invoiving struc- 

tural members (Kishimoto et al., 1989). 

Clearly impact strength needs to be analyzed in 

relation to impact problems of  plates (Ujihash et 

al., 1986), which are widely used in structural 

plate members. The fracture patterns are espe- 
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cially diverse in the case of fragile materials such 

as bus and building glasses subjected to the 

impact of high-speed flying bodies, and it is 

difficult for fracture phenomena to be analyzed 

quantitatively. 

Recently TV structures have been improved 

through impact test, which is carried out to devise 

a safety measure of fracture prevention for a TV 

Braun tube(Kim et al., 1993, Hondou et al., 1978 

and Ganebasi  et al., 1993) and through a 

photoelasticity test to obtain the impact stress 

distribution through a steel drop test. But experi- 

mental result strength has not been analyzed over 

the fracture strength and critical penetration 

energy. The fracture patterns are diverse even 

though the conditions are the same, so the frac- 

ture mechanism needs to be analyzed. 

Thus, in this study, when float glass plates are 

subjected to static loading, the fracture patterns 

are observed until failure of the glasses occurs, 

and the measured strain is compared with numeri- 

cally calculated solutions. In the case of glass 

plates subjected to the high speed impact, the 

limit and critical penetration energy ranges are 

obtained according to the dimensions of impactor 

mass. An analytical method is presented to ana- 

lyze the fracture and penetration strength, and the 

fracture patterns are investigated with respect to 

impact speed. 
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For  each test, the static and impact loads are 

applied to the center zone of  a square plate 

(300 • 300 mm) supported at its edges. The three- 

dimensional dynamic theory of  elasticity using 

Cartesian coordinates and displacement potential 

theory (Nakahara,  1979) is used and impact 

stresses are analyzed. When a ball collides with 

an infinite plate, Hertzian contact theory (Gold- 

smith, 1990) is applied to this study. The numeri- 

cal inverse Laplace transform uses an F. F. T. 

algorithm, with the parameter of  the Laplace 

transform is zero for static strength anatysis. 

2. T h e o r e t i c a l  A n a l y s i s  

2.1 Stress analysis 
In the case where the center zone of a square 

plate (2a 2a) simply supported at four sides is 

subjected to partial  distributed impact loading 

qof(t) as shown in Fig. 1, the impulsive stresses 

generated can be analyzed (Yang, 1988) by using 

the three-dimensional  dynamic theory of elastic- 
ity (Johnson, 1972). 

The origin point of coordinates (x, y, z) is at 

the center of  the middle plane of  plate. At the 

origin, let us now represent u, v, w, crx, ay, a~, 

and rxy, rx=, ry~ as the displacement components, 

the normal stresses, and the shear stress compo- 

nents, respectively. The three-dimensional equa- 

tions of motion are (Johnson, 1972).: 

OaX ~_ ~ryx -t- ~rZX ~2U 
3x ~ y -  W =  P at ~ 

3r~y 4- Say + 3r=y 92v 
~T ~ -  W = P G ~ t  2 

~rx=, 8rye ,  ~a~ 82w 
& ~t~=P~7~ (I) 

Substituting for stress-strain and strain-displace- 

ment relations into Eq. (1) leads to the displace- 

ment equations (Ni, 1985): 

1 3e _ p 3~u 
VZuq 1 - 2 v  3x G c~t 2 

VZv_~ 1 8e _ p 32v 
1 - 2 v  @ G 3t z 

V2w _[ 1 3e p 32w 
1 - 2 ~  3 z - G  3t z (2) 

where 

qof(t) ~ l  t / ~ / /  

,). , iSz y . / / /  x 

u 

Z 

t 
[ ~ 2c  :j 

l l l l  1 q~ 

2a  

Fig. 1 A square plate subjected to partial distributed impact load on the center 
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, 8u 8v , 8w ~- =~X-+~-~ &,  
8 2 8 s a s 

V s = ) 7 - + ~ 7 - t  &2 

Here, G is the shear elastic modulus. 
The displacement components can be represent- 

ed in terms of displacement potentials (~'0, ,41,/l> 
Aa) (Nakahara, 1979 and Achenbach, 1975) as 
follows: 

~ _  8A aAz 
2 G u =  -~ 8y 3z 

~ _  C~kl 8Aa 
2, Gv = 4 8z 8x 

2',Gw _fl~oo -I 8'2's 3A~ 
- -  & OX @ 

(3) 

Substitution of Eq. (3) into Eq. (2) yields the 
governing wave equations from the potentials as: 

1 3~o0 V~Al=l,2 02A~ WA - 1 a~A 
v~ '~  3 at ~ ' at ~ , ~ - ~  at ~ (4) 

where s 2 ( l - - v )  G z G 
c , , -  i ~ 7  , c , = 7  

Here, u is Poisson's ratio of the plate, cp is the 
propagation velocity of the longitudinal wave, 
and cs is the propagation velocity of the shear 
wave. 

These" displacement potentials can be approxi- 
mately given by: 

ggO= (~mnCOS O~mX COS ~nY, 
):1 =A~mn COS amX sin any 
22=d2m,,sin amX cos any, 

23=Aa~,,sin a~x cos a~y (5) 

where am= ; r ( 2 m - 1 )  , a~= z r ( 2 n - 1 )  (m, n =  
2a 2a 

1, 2 . . . .  ) 

and ~m., Aam., A2.,~, A a  are functions having 
two undetermined coefficients at the general solu- 
tions. 
Here, in the absence of Z-directional rotation, Aa 

=0. 
The use of the stress-strain and strain displace- 

ment relation in Eq. (3) leads to the following 
relations of  the stress components and displace- 
ment potentials: 

82q~o 3s Az v s 
ax= ax s 3 x &  ~-~2--2~-V ~'o 

o'y= 32q~~ 8s/~1 v s 
~yS ay#z ~ - T - 2 7  V ~ 

cr __ 3s~0 ~_ 82A 3zA1 ~ 2 
-- 3z s " Ox~z OzOy ~ - l ~ - 2 v  -V ~Oo 

(6) 
aS~o + 1 (  Y,h as,~s ' I Txy 

d2(~O +-1( 32A2 C~2/~1 ~2A2) 
rx*= OxOz 3x 2 (~xOy OZ 2 

rye:= 3ySz ~ k  3x3y jyS j z s  ] 

Because Eq. (4) are linear differential equations, 
we can remove time t by applying the Laplace 
transform. 

The initial conditions for the displacement 
potentials on a square plate before impact (t_<O) 
can be expressed as: 

(U, V, W)t=0:0, (~/~ o~V ~'W) 
a t '  3 l '  8t t=0 = 0  

(7) 

The Laplace transform applied to Eq. (4) gives: 

s ~ f ~ p2 . . . .  s v % = ~ L  (s) v (;o=-~7~,o, v 2 s  ' t1 ' :  c, 

where ~ 0 = f = ~ o e - " c t t ,  L = f = A l e - ~ ' d t ,  

Z~= f~Ae-~dt 
p is the Laplace parameter and symbol (A) 
means Laplace transform. 

Substitution of Eq. (4) into Eq. (8) leads to 
the following ordinary differential equations for 
Z-direction behavior: 

2 
dZ ~"'dz2 - (a~2-+-a,q2-}-~/~7) (~mn 

* 2  
-- (am2+ ~ /  + - ~ )  21ran 

d2 AZm~ 
- ( a , s  a / +  cP@~) A~m~ (9) dz  2 

General solutions of Eq. (4) can now be re- 
presented as: 

Cpo = ~,  ~ ,  [ C t e  r + C2e-ls'~"zj cos anv~cos any m=ln=I 

/{1= ~ ~ [ D ,e""Z  + D s e - " " Z l c o s  amxsin any m=ln=l 

/{2 =: 52, 52, [E~ e ~.z + E2 e-z~"zl s in amXCOS a .y  m=lrt=l 
(lO) 
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Here, 

z _  z ~ pe a z +  P~ 
) ' r a n  = a m  C2 2 titan --am +an +-~f, a.~-+ 

and C~, Cz, D~. 1)2, E~. Ez are unknown coeffi- 
cients to be determined by boundary conditions. 

The boundary conditions can be expressed as 

follows (see Fig, I): 

i ) r ~ =  r~r=0 at Z = - h / 2 ( u p p e r  side of 
pla~e) 

~r~- - ao/ (~) U ( c - t  :r I~ O ( c - f  y t) ( l O  

ii ) ~ =  r~  = r~.=O at Z -  h/2 (lower stde of 
plate) 

where U ( c - l x l )  U ( c - l y l )  denotes the 
umt step funtion. 

The Laplace transform of Eq. (11) becomes 

( i )  & - - o o f ( ~ ) U ( c - l x l ) U ( c - t y l > .  
~ = =  r = 0  at Z = - h/2 

( i i )  6 ~ - ? ~ = f . . = 0 a t  Z = h / 2  (12) 

After substituting Eq. (10) into the Eq. (6), 

and the boundary condit ion (12) into Eq. (6), 

we can determine the unknown coefficients (C~, 

Ca, D~, /)2, E .  Ea). 
However, in the expression for o~ the right- 

hand side denotes a periodic function and the left 

term implies a unit step function. Therefore the 

Fourier  cosine transform of U ( c - ]  x 1) U ( c - ]  

y 1) can be utilized, and the result is as follows: 

r a = l n = l  

- a ~ . e  I ~~ + e~fl=~e~-e~"ZmD2 

+ l?..a.d-"~"z'Z~E~- ~.,.e~e<~.ZmE.] 

=-Old] (t) ~2 ~ 4sin(ce~c)sin(a.c) (13) 
m = I n = 1 f f r n f f n ~ [  g 

The area (2c • 2c) of parlially dislributed load- 

ing can be made to approacl zero by making the 

right-hand side of Eq. (13) be a concentraled 

loading. That is, let F0 be the concentrated load 

acting on the plate (Yaag, 1988): 

he 4 .~sin(a~,C)sin(a.C) Fa 
r h o d e   (Z-d5 - a ' 

Fo=4C~on (14) 

Obtaining simuttaneous equations of  sixth 

degree using the foregoing equation, one can 

determine the unknown coefficients(Cb Cz, D~, 

Dz, E~, E~). Jubjequenthy, substituting these 

equations into Eq. (10) leads to the stress-com- 

ponent equations as follows: 

~ 12 20 2 

~X=m<.=l ~ y '  E(--a '~-~ 1--2U C~ ~)#"'zC~ 
, z.~ 2 

+ ( - a~ 2 + ~ )  e-~"zCz-  a. ?'~.E~ e ~.z 

+ am)'mne-""ZE2] cos amx cos a .y  

2 

--anZmne-~"2D~]coa ar~x COS a.!r 

,~:a~=l 1--2tJ cTf ) e~'"zC' 

+ tom= q - ~ J  =- u~Z,,,,,e ut 

+ a~).mne-r'"ZDz+ an).m~e""ZE1 

-a=)'m.e-~="ZE2]cos ce=x cos a~y (15) 

Addit ionally,  the strains can be expressed as 

follows: 

- am)'~,~ (E~ e r~.z _ E2 e - ~=.z) ] cos a,.x cos a.y 

e ~ = ~ =  ~ 2 ~ - [  ( -  e. )(C,e~m"z+C2e-~"z) 

-V an)'mn (D~e rm"z -D2e -r="z) I cos amX COS any 

c~g: = ~_12@ [t~a,~.( C,e""z + C,e-a~"z ) & =  & : 

+ e,O'~,, (E~e ~"z - E~e -~''z) - a.Zr.. (Dw ~"~ 

-Dae ~'"Z)]cos a ~  cos a.y (16) 

Here, Z/t is the sampling time, and the series are 

summed up to (m, n ) = ( 1 0 0 ,  100). where the 

strains and stresses lead to convergence, 

2 .2  A n a l y s i s  o f  i m p a c t  l o a d i n g  

In this section, Lagrange's classical theory and 

Hertzian contact theory are used to analyze 

impact [vt~ding in the case whe~ measurement of  

impact loading is difficult, which consider locat 

deformations by collisions between a steel bali 

and plate. So, the following impact loading coeffi- 

cient can be derived as follows: 

f r  f ' ~  f r  

(17) 

Here, P ( r )  denotes the nondimensional impact 
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1 / 1 \1/~/1 \2/3/8D \~/3 loading coefficient, l p = - ~ - - ~ )  ~ )  ~ )  , 

m is the mass of the steel ball, V is the velocity 

of the ball, k is the contact coefficient of Hertz, D 

is the flexural rigid coefficient, and C b : : / D  V pk" 
Impact stresses can be analyzed by the inverse 

Laplace transform of Eq. (16) at an impact load- 

ing point, but it is hard to obtain the impact 

loading due to the nonlinear integral Eq. (17). 
Thus, the impact loading is obtained by the finite 

difference method from Eq. (17). if the impact 

loading can be approximated by analytic analyza- 
ble functions, impulsive stresses can be analyzed. 

Theretbre, in this study, a method is presented to 

analyze impulsive stress. 

The functional approximation of impact load- 

ing is suggested by the following equation in 
order to analyze impulsive stresses at a point of 

impact loading : 

f ( t )  ---Ate -~' (18) 

After substituting the boundary condition given 

by Eq  (12) into Eq. (18), we can defermine the 

unknown coefficients (CI, Cz, Dr, /92, El, E2). 

3. Numerical Calculation 

In this section, the equations of  strain and stress 

components obtained with the Laplace transform, 

which were analyzed using the three-dimensional 

dynamic theory of elasticity, were %und by the 

inverse Laplace transform, and impulsive stresses 
were analyzed. However, the inverse Laplace 

transform of three-dimensional dynamic theory 
of  elasticity is difficult; thus, the numerical inverse 

Laplace transform is calculeted by the Fast Four- 
ier transform : 

eTk&t N-I 
( ~o, A,, A2)k- T ,~o ( ~o, ,h, A2)n. 

r2~2nn~(k:0, 1, 2 . . . N -  1) 

(19) 

where (~0, A1, A2)k= (~0, AI, A2)t=h'zll (~o, Al, f12)n 
: (~o,  A,, A2)p=,-+t~Aw, and i = , / ~ - 1  
Here, T is the real part and co the imaginary part 
of the Laplace transform parameter, N is the 

number of samples and T the sampling period, 

and A t - - T / N ,  A w : 2 z / T  and r > 0 .  Also, to 
improve precision and reduce computation time, 

length(x/h) and time (cffh) are treated as a 
nondimensional parameter. For numerical calcu- 

lation the wtriable F of Eq. (19) is set to 6 / T  
(Krings, et al., 1979) 

4. Experimental Apparatus 
and Method 

in this experiment, to shoot with the required 

velocity, a horizontal-air-pressure impact testing 

apparatus was used, whose schematic diagram is 
shown in Fig. 2, and specimens are supported. 

[ Valve unit ~::~ Compressor 1 
II Laser Specimen 

Air gun [--] F-] [-] 1 Jig 

- -  U U U  - , , i t f  

 111/111111/111111/11/1111111111IIIIIII/ 11//i! 111111/   11111111//I//11111/I/ /. 
[ U n i v e r s a l - {  Flashunit ] 7 

counter 
High speed camera 

Fig. 2 Schematic diagram of impact apparatus 
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Impacts were made at the plate center at velocities 

a between 29 m/s and 130m/s. The impact veloc- 

ity was obtained by varying air pressures on a 

compressor, and square plates made of glass with 

dimensions 300 mm • 300 mm • 2 mm, 3 mm, and 

5 mm (width •215 were used. 

After bonding Rossete strain gauges on the center 

of  the plate, we measure strain e by impacting on 

the opposite side. When the strain ex is equal to 

the strain ey, we assume the impact is central. 

The specimens are fixed supported at the edges, 

and strain is measured within the range before the 

glass plate is fractured. Also, material constants 

used in the numerical calculation were obtained 

by the three point bending test. It was determined 

that Young's modulus, E is 67.6 Gpa and the 

Poisson's ratio v is 0.22. The velocity of the steel 

ball was measured just before impact by determin- 

ing the time taken for it to pass two fine laser 

beams a known distance (10 mm) apart. Also, the 

steel-ball  velocity after penetration was measured 

by using a high-speed camera, and the steel balls 

used in this test have diameters of 5 and 10 mm, 

respectively. 

5. C o m p a r i s o n  o f  E x p e r i m e n t a l  and 

A n a l y t i c a l  R e s u l t s  

5.1 Static fracture test 
The results of the static fracture test are 

compared with numerically calculated solutions 

obtained using the three dimensional dynamic 

theory of elasticity and the displacement potential 

theory at the concentrated impact loading point, 

with the Laplace transform parameter set to zero 

in this analysis. 

Comparisons of experimental results with ana- 

lytical solutions of  Eq. (17) are shown in Fig. 3, 

where plates of thickness 2, 3 and 5 mm are 

fractured by static loads. In Fig. 3, symbol ( •  

denotes the fracture point. Experimental results 

agree well with analytical solutions as the plates 

become thicker; but for thinner plates, a differ- 

ence between experimental and analytical results 

occurs due to plate bending stiffness. 

2 . 0  

• 

t.5 s [] 

1.o 

0 .5  

�9 h = 2 m m  

Analytical result : - -  
[ I _ _ .  I I I I I 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Strain : ,  (/~:) 

Fig. 3 Comparison of analytical results with experi- 
mental results of strain from the concentrated 
load point 

5.2 Impact fracture test 
First, to verify the analytical methods of im- 

plusive stresses using the three-dimensional  the- 

ory and the approximation equation of impact 

loadng, the calculated results of the numerical 

inverse Laplace transform of strain Eq. (17) were 

compared with the results measured for strain at 

the point of concentrated impact loading. 

In Fig. 4, a solid line shows the numerically 

calculated solution obtained by using f ( t ) = A t  
e x p ( - c o t ) ,  The dotted line shows the measure- 

ment of  experimental results of strain. In Fig. 4, 

which shows a steel ball 20 mm in diameter with 

a velocity of 5m/sec impacting a 5 mm thick 

plate, numerically-calculated and experimental 

results are compared. By using the approximation 

equation f ( t ) = A t  e x p ( - o a t ) ,  an error of 
approximately 14% occurs for the peak point of 

measuring strain as shown in Fig. 4.Also, times of 

peak points for strain waves appear at 28.12/~sec 

and 28 ~sec, in that order. The experimental 

results agree with the analytical solution to a 

certain degree. Therefore, it is believed that the 

approximation equation f ( t ) - A t  e x p ( - w t ) ,  

presented in this study is vaild in the application 

of  stress analysis. 
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3.0 
{> ~O ;] - -  Experimental result 

f(t) = At exp{-wi) 

2,0 

-10.  I . . . . . . . . . . . . . . .  ~ _ _  J ~  �9 

0 100 200 30O 400 
T i m e  ( .  see} 

Fig. 4 Comparison of analytical solutions with 
experimental results with variations of time 
and strain at the impact point 

An impact testing apparatus was utilized as 

shown in Fig. 2. When the glass plates were 

broken, the penetration critical velocities were 

measured through repeated impact tests by using 

a high-speed camera. Also, Fig. 5 shows the 

results of the penetration test when a steel ball (~b 

10 mm) was impacted on glass (thickness 3mm). 

The solid line of Fig. 5 is plotted with the method 

of least squares; the critical penetration velocity is 

29 m/s, and the equation of the solid line is Volt 

: [1.067 V,~-3I 1 m/s. The energy of the penetra- 

tion w,qocity E:~,  is 1,723 J. 

As shown in Fig. 5, the variations of collision 

after/before velocity are constant regardless of 

velocity before collision, approximately 30 m/s. 

Fracture strength at which the glass plates cannot 

be penetration-fractured is obtained by substitu- 

tion of the penetration critical velocity predicted 

in Fig, 5 and material properties of the steel ball 

and glass plates into Eqs. (12), (16) and (18). 

Figure 6 shows the analyzed solutions of stresses 

when a Steel ball 10 mm in diameter is impacted 

on a glass plate 3 mm in thickness with an impact 

velocity of 29 m/s. So, the fracture strength at 

which penetration-fracture does not occur is 11. 

3269 GPa and the peak time is 10.9375 ,usec. 

Also, to consider how to change the patterns 

with variations in collision velocity, the plates of 

thickness 3 mm were impacted by a steel ball (~b 

= 10 rnm), and the impacted plate patterns are 

shown in Fig. 7. The fracture patterns consist of a 

penetration hole (@),  ring cracks (@, @) and 

radial cracks (@).  The radial cracks almost 

;L < 
i2:i / 

0 2 0  4 0  6 0  8 0  1 0 0  ? 2 0  

Fig. 5 Critical penetration veiocity 

1.5 T 

10" 

L~ 
o.5. 

[ 

-0.5 I 

Fig. 6 

0.0 40.0  80 ,0  120.0 160.0 

"Time(10E-6 sec) 

Fracture strength at critical penetration 
velocity(steel sphere :~ 10, impact velocity : 
29 m/see, plate thickness : 3 ram) 

" j  j @  

0- - -~  

Fig, 7 Fracture patterns(@ ' Penetration hole, 
(2-), @ " Ring crack, @ �9 Radial crack) 

reached the edges; inner parts of the ring cracks 

(~), @) at the impact point are thinly fractured, 

and a hole (diameter d) of  almost the same steel 

ball diameter is generated. The parts between ring 

cracks (@, @) generally become flying debris. In 

the case of 100 m/s collision velocity, the fracture 

patterns are shown in Fig. 7; but with increasing 

velocity, ring cracks are not generated and the 
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length of  the radial  cracks becomes shorter than 

that of  the radial  cracks of  Fig. 7. The  inner 

d iameter  o f  the ring cracks becomes shorter  with 

increasing velocity. The rough inner diameter  is 

shown in Fig. 8 for variat ions in col l is ion veloc- 

ity. 

Tab le  1 shows the fracture condi t ions  when the 

plate of  3 mm thickness is impacted by a steel ball 

( r  mm) .  With variat ions in col l is ion veloc- 

ity, crack patterns are as shown in Fig. 9. In the 

case of  the steel ball  ( r  mm) only, fracture 

condi t ions  are observed because it is difficult to 

measure a steel ball velocity of  mass 0.5 g after 

penetration.  Especially,  many tests were carried 

out within the range of  the af ter /before  penetra- 

tion velocity. Penetrat ion fracture occurs at 

approximate ly  94 m/s.  The  fracture does not 

F i g .  8 

8 O  

E 

60 2 

40 

.~  2 0  

0 

0 

0 

o 

o 
, ' D O G  

2 

6 0 710 810 910 1 C)0 11 0 
I m p a c t  vc.h,t  i l V  (m,,~ 

Inner diameter of  ring cracks with variations 
of collision velocity 

, . :  .,~.,,~ ......... ~ ~ ~ . =  

�9 .. " i  ' 

�9 . , +  "':'~:-U '~ : ~:: ~:;&. '.V. 

occur  before a col l is ion velocity of  84 m/s ,  but 

within the range of  8 4 ~ 9 2  m/s ,  the radial  cracks 

are generated from the impact  point  in static 

fracture patterns. 

By impact ing a steel ball  ( r  ram) on a plate 

from Table  1, the f racture-generated impact  

Table 1 Fracture conditions 

Diameter of ring 
Impact velocity Fracture form 

crack (mm) 

0.93 J Non- f rac tu re  

1.33 J ,, 

1.40 J /-' 

1.44 J t,, 

1.64 J /,' 

Radial  crack, 
1.81 J 

Non penetration 

2.08 J // 

2.17 J /+ 

2.27 J 50 ~ 100 Penetra t ion 

2.67 J 40~60 h" 

3.11 J 40~50 // 

3.58 J 30 ~ 40 // 

4.02 J 15~20 // 

4.35 J 15 ,'/ 

�9 '@". 5 ? A  ~ '; : " . "  ~:! 
, ~, . �9 . 

Z 

ti i 

(a) 102 m / s  (b) 94 m / s  

Fig. 9 Crack patterns with variation of  collision velocity 
(Steel ball: r mm, plate thickness: 3 mm, impact velocities) 
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velocity is about 84 m/s (1.764 J) and the pene- 

trat ion-generated impact velocity is about 94 m/  

s (2.21 J). If the results are compared with the 

critical penetration energy in Fig. 5 (about 1.723 

J in the case of  a steel ball, r I0 mm), the 

penetration-required kinetic energy for a steel 

ball of diameter 5 mm is increased by approxi- 

mately 20% for a steel ball of diameter 10ram, and 

the fracture-required critical energy for a steel 

ball of diameter 5 mm is about 5% greater than 

that for a steel ball of diameter 10 mm. Thus, it is 

found that the fracture and penetration-required 

critical energy for a smaller steel ball is greater 

than for a larger steel ba l l .  Also, if the magnitude 

of the ring cracks is compared with that of impact 

velocity as shown in Fig. 9 and Table 1, the 

diameter of the ring cracks and length of the ring 

cracks becomes shorter with an increase in impact 

velocity. For  a penetrat ion-init iated impact veloc- 

ity of 94 m/s,  Fig. 10 shows numerically calcu- 

lated solutions of plate fracture strength in the 

case of impacting a steel ball ( r  5 ram) on a 

plate. The fracture strength of the plate is 4.9907 

GPa,  and the penetration-fractured strength of 

the plate is 5.0253 GPa. But, it is known that the 

above sl:rength values appear smaller than I 1.3269 

GPa  of penetration fracture strength within the 

range of cri t ical-penetration velocity in the case 

of impacting a steel ball ( r  10 mm) on a plate. 

As the mass of the steel ball becomes smaller, the 

penetration-fracture strength decreases because 

the impulse of impacting a steel ball of thickness 

10 mm (0.117605 N sec) is greater than that of 

impacting a steel ball of thickness 5 mm (0.05604 

N sec) within the same range of each impact 

energy 1.6 J in the case of 28 m/s  collision 

velocity using a ball diameter l0 mm and of 8 m/  

s collision velocity using a ball diameter 5 mm. 

Therefore, the penetration fracture is much more 

rapidly generated in the case of  greater impulse 

even through the impact energies are the same as 

shown in Fig. l l (Peak-point  loading is 5666.518 
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Fig. 11 Max. loading with the difference of masses of impactor (Impact energy E =  1.6J) 
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N in the case of impacting a steel ball (~b 10 mm) 

with collision velocity 28 m/s  and peak-poin t  

loading is 9459.742 N in the case of impacting a 

steel ball (~b 5 mm) with collision velocity 80 m/  

s and if compared with the above two kinds 

where impact energies are the same, peak value of 

impact loading appears to be greater for the 

smaller mass of steel bal l) .  

6. Conc lus ions  

The results obtained from this study are as 

follows: 

(1) An analytical method to be approximated 

to the analyzable function is valid, using the three 

dimensional dynamic theory of elasticity and 

potential theory of displacement. Also, it is 

thought that this analysis can be applied to frac- 

ture strength estimation of brittle materials. 

(2) Radial  cracks are generated from the load- 

ing point regardless of plate thickness in the case 

of plates subjected to static loading. In the case of 

high speed impact, dimensions of ring cracks 

become smaller and length of radial cracks 

becomes shorter with an increase in impact veloc- 

ity. 

(3) Kinetic change volume of collision after/ 

before is constant regardless of velocities over the 

range of critical penetration velocities. 

(4) Even though the impact energy is the same, 

the critical penetration energy increases with a 

decrease in impactor mass. 

(5) Although the same impact energy is work- 

ing, a greater penetration fracture is generated for 

a lighter impactor mass than for a heavier 

impactor mass, and the impulse of the lighter 

impacter mass appears greater than that of the 

heavier impactor mass. Therefore, the penetration 

fracture in the case of greater impulses is generat- 

ed earlier regardless of the dimensions of impact 

loading. 
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