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A Study on Penetration Fracture Characteristics
of Glass Plates Subjected to Impact Loadings

Kwang-Hee Im*, Ji-Hoon Kim** and In-Young Yang***
(Received November 30, 1996)

In this study, a comparison between theoretical solutions and experimental results are
examined for fracture conditions in the case of float glass plates subject to static loadings. The

ranges from fracture-generated initiations to critical penetration energies are confirmed accord-

ing ro the impactor mass under high velocity, and an analytical method is presented to determine
the fracture strength and penetration strength. Also, fracture patterns are investigated according

to impact velocities.
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1. Introduction

When a machine or structural component is
subjected to impact loading, unexpected failure
can occur as a result of stress wave effects. Such
impact problems are dependent on dynamic
behavior, and to investigate the dynamic phenom-
ena generated in the materials, research activities
have recently focused on plates subjected to high
-speed impact{Wang et al, 1989 and Holian,
1990), on the impact of composite shell members
used in ships and aircraft bodies (Chao et al.,
1989), and on impact problems invoiving struc-
tural members (Kishimoto et al., 1989),

Clearly impact strength needs to be analyzed in
relation to impact problems of plates (Ujihash et
al.,, 1986), which are widely used in structural
plate members. The fracture patterns are espe-
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cially diverse in the case of fragile materials such
as bus and building glasses subjected to the
impact of high-speed flying bodies, and it is
difficult for fracture phenomena to be analyzed
quantitatively.

Recently TV structures have been improved
through impact test, which is carried out to devise
a safety measure of fracture prevention for a TV
Braun tube(Kim et al., 1993, Hondou et al., 1978
and Ganebasi et al, 1993) and through a
photoelasticity test to obtain the impact stress
distribution through a steel drop test. But experi-
mental result strength has not been analyzed over
the fracture strength and critical penetration
energy. The fracture patterns are diverse even
though the conditions are the same, so the frac-
ture mechanism needs to be analyzed.

Thus, in this study, when float glass plates are
subjected to static loading, the fracture patterns
are observed until failure of the glasses occurs,
and the measured strain is compared with numeri-
cally calculated solutions. In the case of glass
plates subjected to the high speed impact, the
limit and critical penetration energy ranges are
obtained according to the dimensions of impactor
mass. An analytical method is presented to ana-
lyze the fracture and penetration strength, and the
fracture patterns are investigated with respect to
impact speed.
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For each test, the static and impact loads are
applied to the center zone of a square plate
(300 % 300 mm) supported at its edges. The three-
dimensional dynamic theory of elasticity using
Cartesian coordinates and displacement potential
theory (Nakahara, 1979) is used and impact
stresses are analyzed. When a ball collides with
an infinite plate, Hertzian contact theory (Gold-
smith, 1990) is applied to this study. The numeri-
cal inverse Laplace transform uses an F. F. T.
algorithm, with the parameter of the Laplace
transform is zero for static strength analysis.

2. Theoretical Analysis

2.1 Stress analysis

In the case where the center zone of a square
plate (2a 2a) simply supported at four sides is
subjected to partial distributed impact loading
gof(t) as shown in Fig. 1, the impulsive stresses
generated can be analyzed (Yang, 1988) by using
the three-dimensional dynamic theory of elastic-
ity (Johnson, 1972)
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The origin point of coordinates (x, y, z) is at
the center of the middle plane of plate. At the
origin, let us now represent x, v, w, Ox> Oy Oz
and ryy, Tk Iy as the displacement components,
the normal stresses, and the shear stress compo-
nents, respectively. The three-dimensional equa-
tions of motion are (Johnson, 1972).:

% afyx afzx_ azu
ox + oy * 9z 7ot
aTxy _aﬂ asz_ 8221
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8sz afyz an_ 823{)
ox oy Taz P ar M

Substituting for stress-strain and strain-displace-
ment relations into Eq. (1) leads to the displace-
ment equations (Ni, 1985):
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Fig. 1 A square plate subjected to partial distributed impact load on the center
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Here, ( is the shear elastic modulus.

The displacement components can be represent-
ed in terms of displacement potentials (o, A1, Az
As) (Nakahara, 1979 and Achenbach, 1975) as
follows:

=20 s _

T ox  dy oz
o= 0%0 , 01 0
2Gv= Ay + 0z ox
oy O%0 | 02 O
2Gw= 5 + oy (3)

Substitution of Eq. (3) into Eq. (2) yields the
governing wave equations from the potentials as:

2 2 )
where Ci}:Mﬁ . G

1—2v 0 ¢
Here, v is Poisson’s ratio of the plate, ¢cp is the
propagation velocity of the longitudinal wave,
and cs is the propagation velocity of the shear
wave.

These displacement potentials can be approxi-
mately given by:

©0= DmnCOS AmX COS AnY»
/1= mn COS @mX SIN @ny
79= SN @nX COS Any»

la=mnSIN amx COS Any (5)
where @, = x(2m=1) = z@n—1) (m, n=
2a 2a
1, 2,..)

and Qnnn Awns P LPmn are functions having
two undetermined coefficients at the general solu-
tions.

Here, in the absence of Z-directional rotation, Js
=0.

The use of the stress-strain and strain displace-
ment relation in Eq. (3) leads to the following
relations of the stress components and displace-
ment potentials:
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Because Eq. (4) are linear differential equations,
we can remove time t by applying the Laplace
transform.

The initial conditions for the displacement
potentials on a square plate before impact (7 <0)
can be expressed as:

—o (Qu Odv dw) _
(w2 v, W) (=0=0, ( ot ot ot >t=o“0
N

The Laplace transform applied to Eq. (4) gives:
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p is the Laplace parameter and symbol (A)
means Laplace transform.

Substitution of Eq. (4) into Eq. (8) leads to
the following ordinary differential equations for
Z-direction behavior:
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General solutions of Eq. (4) can now be re-
presented as:
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Here,

Z
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and Ci, Co. Dy, Ds, E,, E; are unknown coeffi-
cients to be determined by boundary conditions.
The boundary conditions can be expressed as
follows (see Fig. 1):

(1) fex=1:=0 at Z =~ };/2 (upper side of
plate)
o= —gf (Y U —1x D ULc—]y I} OO1)
(1) 6:=t2x=12=0 at Z = n/2 (lower side of
plate)
where [/(c—|x|)U(c—|y]|) denotes the
unit step funtion.

The Laplace transform of Eq. (11) becomes
(i) Ga=—af (D Ulc—|xDUle—|y ).
Tee=1=02t 7=—p/2

(li) 8:= Txa=Top=0at Z=}/2 (12)

After substituting Eq. (10) into the Eq. (6),
and the boundary condition (12) into Eq. (6),
we can determine the unknown coefficients (Cy,
Co Dy, Doy Ev, E3).

However, in the expression for g, the right-
hand side denotes a periodic function and the left
term implies a unit step function. Therefore the
Fourier cosine transform of UU(c—|x |) U(c—]|
v |) can be utilized, and the result is as follows:
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The area (2cx 2c) of partially distributed load-
ing can be made to approacl zero by making the
nght-hand side of Eg. {13} be a concenirated
Ioading. That is, let FQ be the concentrated load
acting on the plate (Yang, 1988}:

ssin(enC)sinta,C) _ K
lim4guC HanC) (@:C) &

Fo:‘tcjdn (14)
Obtaining simultaneous equations of sixth
degree using the foregoing equation, one can
determine the unknown coefficients (C,, Cs D
Dy, Ei, Es). lubjequenthy, substituting these

equations into Eq. (10) leads to the stress-com-
ponent equations as follows:
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Additionally, the strains can be expressed as
follows:
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Here, 4f is the sampling time, and the series are
summed up to {m, n)= (100, 100), where the
strains and stresses lead to convergence.

2.2 Analysis of impact loading

In this section, Lagrange’s classical theory and
Hertzian contact theory are used 1o analyze
impact loading in the case when measurement of
impact loading is difficult, which consider local
deformations by collisions between a steel ball
and plate. So, the following impact loading coeffi-
cient can be derived as follows:

== [ [P dnte- [Pty

(7

Here, P(r) denotes the nondimensional impact
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loading coefficient, [p= %(%)1%%)2/3(%@—)5/3,
b

m 1s the mass of the steel ball, V' is the velocity
of the ball, % is the contact coefficient of Hertz, D

is the flexural rigid coefficient, and C,= /—p%,

Impact stresses can be analyzed by the inverse
Laplace transform of Eq. (16) at an impact load-
ing point, but it is hard to obtain the impact
loading due to the nonlinear integral Eq. (17).
Thus, the impact loading is obtained by the finite
difference method from Eq. (17), If the impact
loading can be approximated by analytic analyza-
ble functions, impulsive stresses can be analyzed.
Therefore, in this study, a method is presented to
analyze impulsive stress.

The functional approximation of impact load-
ing is suggested by the following equation in
order to analyze impulsive stresses at a point of
impact loading :

f(B) =Ate™™" (18)

After substituting the boundary condition given
by Eq. (12) into Eq. (18), we can defermine the
unknown coefficients (C), Cp D1, Du Ei. Ed).

3. Numerical Calculation
In this section, the equations of strain and stress

components obtained with the Laplace transform,
which were analyzed using the three-dimensional

Valve unit Compressor
Air gun
/ Acceleration tube

dynamic theory of elasticity, were found by the
inverse Laplace transform, and impulsive stresses
were analyzed. However, the inverse Laplace
transform of three-dimensional dynamic theory
of elasticity is difficult; thus, the numerical inverse
Laplace transform is calculeted by the Fast Four-
ier transform :

rROE N—1
(@0’ /11’ Az)k:‘e“T_’g‘)(@)» /lla AZ)II'

PN (=0, 1,2 .N—1)
(19}

where  (@o, A1, A2) 2= (@0 A Ao) v=n* A (@0 As A2) n
= (@os As A2) p=r+mdw, and i=y—1

Here, y is the real part and @ the imaginary part
of the Laplace transform parameter, N is the
number of samples and 7 the sampling period,
and 4t=T/N. Adw=27x/7T and r >0. Also, to
improve precision and reduce computation time,
length (x/h) and time (c,/h) are treated as a
nondimensional parameter. For numerical calcu-
lation the variable y of Eq. (19) is set to 6/ 7T
(Krings, et al., 1979)

4. Experimental Apparatus
and Method

In this experiment, to shoot with the required
velocity, a horizontal-air-pressure impact testing
apparatus was used, whose schematic diagram is
shown in Fig. 2, and specimens are supported.

Specimen

l Jig

Laser

i

— T O-

—

Y

Universal Flash unit }

counter

High speed camera

Fig. 2 Schematic diagram of impact apparatus
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Impacts were made at the plate center at velocities
a between 29 m/s and 130m/s. The impact veloc-
ity was obtained by varying air pressures on a
compressor, and square plates made of glass with
dimensions 300 mm X 300 mm x 2 mm, 3 mm, and
5 mm (width X length X thickness) were used.
After bonding Rossete strain gauges on the center
of the plate, we measure strain ¢ by impacting on
the opposite side. When the strain ¢, is equal to
the strain g,, we assume the impact is central.

The specimens are fixed supported at the edges,
and strain is measured within the range before the
glass plate is fractured. Also, material constants
used in the numerical calculation were obtained
by the three point bending test. It was determined
that Young’s modulus, £ is 67.6 Gpa and the
Poisson’s ratio p is 0.22. The velocity of the steel
ball was measured just before impact by determin-
ing the time taken for it to pass two fine laser
beams a known distance (10 mm) apart. Also, the
steel-ball velocity after penetration was measured
by using a high-speed camera, and the steel balls
used in this test have diameters of 5 and 10 mm,
respectively.

5. Comparison of Experimental and
Analytical Results

5.1 Static fracture test

The results of the static fracture test are
compared with numerically calculated solutions
obtained using the three-dimensional dynamic
theory of elasticity and the displacement potential
theory at the concentrated impact loading point,
with the Laplace transform parameter set to zero
in this analysis.

Comparisons of experimental results with ana-
lytical solutions of Eq. (17) are shown in Fig. 3,
where plates of thickness 2, 3 and 5 mm are
fractured by static loads. In Fig. 3, symbol (x)
denotes the fracture point. Experimental results
agree well with analytical solutions as the plates
become thicker; but for thinner plates, a differ-
ence between experimental and analytical results
occurs due to plate bending stiffness.

2.0
15—
::' -
@« 1.0
g
8 -
Q5
B £ h=imm
Experimental result © 0 h=3mm
O h=2imm
Apalytical result - —
_ - L L 1 I T B
00 10 20 30 40 S50 60 70 80

Strain e, (jg)

Fig. 3 Comparison of analytical results with experi-
mental results of strain from the concentrated
load point

5.2 Impact fracture test

First, to verify the analytical methods of im-
plusive stresses using the three-dimensional the-
ory and the approximation equation of impact
loadng, the calculated results of the numerical
inverse Laplace transform of strain Eq. (17) were
compared with the results measured for strain at
the point of concentrated impact loading.

In Fig. 4, a solid line shows the numerically
calculated solution obtained by using £ () = At
exp(— wt), The dotted line shows the measure-
ment of experimental results of strain. In Fig. 4,
which shows a steel ball 20 mm in diameter with
a velocity of Sm/sec impacting a 5 mm thick
plate, numerically-calculated and experimental
results are compared. By using the approximation
equation f(¢)=At exp(—wt), an error of
approximately 14% occurs for the peak point of
measuring strain as shown in Fig. 4.Also, times of
peak points for strain waves appear at 28.12 gsec
and 28 pysec, in that order. The experimental
results agree with the analytical solution to a
certain degree. Therefore, it is believed that the
approximation equation f(¢f)=A¢ exp(—wt),
presented in this study is vaild in the application
of stress analysis.
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Fig. 4 Comparison of analytical solutions with
experimental results with variations of time
and strain at the impact point

An impact testing apparatus was utilized as
shown in Fig. 2. When the glass plates were
broken, the penetration critical velocities were
measured through repeated impact tests by using
a high-speed camera. Also, Fig. 5 shows the
results of the penetration test when a steel ball (¢
10 mm) was impacted on glass (thickness 3mm)
The solid line of Fig. 5 is plotted with the method
of least squares; the critical penetration velocity is
29 m/s, and the equation of the solid line is V,,,
=[1.067 V,,~31]m/s. The energy of the penetra-
tiont velocity Ep, is 1.723 .

As shown in Fig. 5, the variations of collision
after/before velocity are constant regardless of
velocity before collision, approximately 30 m/s.
Fracture strength at which the glass plates cannot
be penetration-fractured is obtained by substitu-
tion of the penetration critical velocity predicted
in Fig. 5 and material properties of the steel ball
and glass plates into Eqgs. (12), (16) and (18),
Figure 6 shows the analyzed solutions of stresses
when a steel ball 10 mm in diameter is impacted
on a glass plate 3 mm in thickness with an impact
velocity of 29 m/s. So, the fracture strength at
which penetration-fracture does not occur is 11.
3269 GPa and the peak time is 10.9375 psec.

Also, to consider how to change the patterns
with variations in collision velocity, the plates of
thickness 3 mm were impacted by a steel ball (¢
=10 mm), and the impacted plate patterns are
shown in Fig. 7. The fracture patterns consist of a
penetration hole (D), ring cracks (@), @) and

radial cracks (@), The radial cracks almost

80

[Vin m/3)

60

after colii

Velocity

i i
0 20 40 60 80 100 120

Velocity before collision (Vowe mss)

Fig. 5 Critical penetration velocity

A
100 [\
[
= A
[ | )
S .
Z 0.5 |
Z | {
g
& f N
0.0 P —— N
-0.5
0.0 40.0 80.0 120.0 160.0

Time( 10E-6 sec)

Fig. 6 Fracture strength at critical penetration
velocity (steel sphere :¢ 10, impact velocity :
29 m/sec, plate thickness : 3 mm)

Fig. 7 Fracture patterns (D . Penetration hole,
@, @ : Ring crack, @ : Radial crack)

reached the edges; inner parts of the ring cracks
(@), @) at the impact point are thinly fractured,
and a hole (diameter d) of almost the same steel
ball diameter 1s generated. The parts between ring
cracks (@, 3)) generally become flying debris. In
the case of 100 m/s collision velocity, the fracture
patterns are shown in Fig. 7; but with increasing
velocity, ring cracks are not generated and the
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length of the radial cracks becomes shorter than
that of the radial cracks of Fig. 7. The inner
diameter of the ring cracks becomes shorter with
increasing velocity. The rough inner diameter is
shown in Fig. 8 for variations in collision veloc-
ity.

Table 1 shows the fracture conditions when the
plate of 3 mm thickness is impacted by a steel ball
(¢==5 mm), With variations in collision veloc-
ity, crack patterns are as shown in Fig. 9. In the
case of the steel ball (¢=5 mm) only, fracture
conditions are observed because it is difficult to
measure a steel ball velocity of mass 0.5 g after
penetration. Especially, many tests were carried
out within the range of the after/before penetra-
tion velocity. Penetration fracture occurs at
approximately 94 m/s. The fracture does not

T —

60 o

20 O

Inner Diameter of fing crack (mm?
F -9
o
T

0 L — 1 e
60 70 80 90 100 110

Impact velocity (myvs!

Fig. 8 Inner diameter of ring cracks with variations

of collision velocity

occur before a collision velocity of 84 m/s, but
within the range of 84~92 m/s, the radial eracks
are generated from the impact point in static
fracture patterns.

By impacting a steel ball (¢=35 mm) on a plate
from Table 1, the fracture-generated impact

Table 1 Fracture conditions

Impact velocity Diameter of ring Fracture form
crack (mm)

0.93 7] - Non-fracture
1337 - ”
1.40] - ”
144 ] - ”
1.64 ] - ”
1815 | Nonpenetrtion
2087 - ”
2.17 ] - ”
2.27] 50~100 Penetration
267] 40~60 ”
3117 40~50 ”
3.58 ] 30~40 y
4027 15~20 ”
4.35] 15 ”

(a) 102 m/s

(b) 94 m/s

Fig. 9 Crack patterns with variation of collision velocity
(Steel ball: ¢5 mm, plate thickness: 3 mm, impact velocities)
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velocity is about 84 m/s (1.764 J) and the pene-
tration-generated impact velocity is about 94 m/
s (2.21 J), If the results are compared with the
critical penetration energy in Fig. 5 (about 1.723
J in the case of a steel ball, ¢ 10 mm), the
penetration-required kinetic energy for a steel
ball of diameter 5 mm is increased by approxi-
mately 20% for a steel ball of diameter 10mm, and
the fracture-required critical energy for a steel
ball of diameter 5 mm is about 5% greater than
that for a steel ball of diameter 10 mm. Thus, it is
found that the fracture and penetration-required
critical energy for a smaller steel ball is greater
than for a larger steel ball. Also, if the magnitude
of the ring cracks is compared with that of impact
velocity as shown in Fig. 9 and Table I, the
diameter of the ring cracks and length of the ring
cracks becomes shorter with an increase in impact
velocity. For a penetration-initiated impact veloc-
ity of 94 m/s, Fig. 10 shows numerically calcu-
lated solutions of plate fracture strength in the
case of impacting a steel ball (¢ 5 mm) on a
plate. The fracture strength of the plate is 4.9907
GPa, and the penetration-fractured strength of
the plate is 5.0253 GPa. But, it is known that the
above strength values appear smaller than 11.3269
GPa of penetration fracture strength within the
range of critical-penetration velocity in the case

10000

of impacting a steel ball (¢ 10 mm) on a plate.
As the mass of the steel ball becomes smaller, the
penetration-fracture strength decreases because
the impulse of impacting a steel ball of thickness
10 mm (0.117605 N sec) is greater than that of
impacting a steel ball of thickness 5 mm (0.05604
N sec) within the same range of each impact
energy 1.6 J in the case of 28 m/s collision
velocity using a ball diameter 10 mm and of 8 m/
s collision velocity using a ball diameter 5 mm.
Therefore, the penetration fracture is much more
rapidly generated in the case of greater impulse
even through the impact energies are the same as
shown in Fig. 11 (Peak-point loading is 5666.518

Stress(GPa)
o
m
w

0.00 PN,
025+ S
0.0 36.0 60.0 90.0 1200

Time( 10E-6 sec)

Fig. 10 Fracture strength velocity at penetration frac-
ture initiation (@5, 43, V=94 m/sec)

80001

-

Impact Load F(t) [N]

Diameater : 5Smm
Thickness : 3mm
Velocity : 80m/sec

R

Diameater : 10mm
Thickness : 3mm
Velocity : 28m/sec

I
6000 ‘1

/ \ -
40001
2000 / ™

0 10 20

Time(10E-6 sec)

Fig. 11 Max. loading with the difference of masses of impactor (Impact energy E=1.6J)
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N in the case of impacting a steel ball (¢ 10 mm)
with collision velocity 28 m/s and peak-point
loading is 9459.742 N in the case of impacting a
steel ball (¢ 5 mm) with collision velocity 80 m/
s and if compared with the above two kinds
where impact energies are the same, peak value of
impact loading appears to be greater for the
smaller mass of steel ball),

6. Conclusions

The results obtained from this study are as
follows:

(1) An analytical method to be approximated
to the analyzable function is vaild, using the three
—-dimensional dynamic theory of elasticity and
potential theory of displacement. Also, it is
thought that this analysis can be applied to frac-
ture strength estimation of brittle materials.

(2) Radial cracks are generated from the load-
ing point regardless of plate thickness in the case
of plates subjected to static loading. In the case of
high-speed impact, dimensions of ring cracks
become smaller and length of radial cracks
becomes shorter with an increase in impact veloc-
ity.

(3) Kinetic change volume of collision after/
before is constant regardless of velocities over the
range of critical penetration velocities.

(4) Even though the impact energy is the same,
the critical penetration energy increases with a
decrease in impactor mass.

(5) Although the same impact energy is work-
ing, a greater penetration fracture is generated for
a lighter impactor mass than for a heavier
impactor mass, and the impulse of the lighter
impacter mass appears greater than that of the
heavier impactor mass. Therefore, the penetration
fracture in the case of greater impulses is generat-
ed earlier regardless of the dimensions of impact
loading.
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